nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 01 v.44 58-65
改性树脂基活性炭对高湿度碘甲烷吸附性能研究
基金项目(Foundation):
邮箱(Email): xyliang@ecust.edu.cn;
DOI: 10.14078/j.cnki.1001-3741.2025.01.009
中文作者单位:

华东理工大学化工学院;

摘要(Abstract):

为提高活性炭对高湿度碘甲烷的吸附能力,采用十三氟辛基三乙氧基硅烷(氟硅烷)和三乙烯二胺(TEDA)对树脂基球形活性炭改性。通过FTIR、SEM-EDS、BET、吸水率测试以及碘甲烷穿透实验对改性前后活性炭进行表征和吸附性能分析。碘甲烷穿透测试结果表明,质量分数为3%的氟硅烷和9%浸渍比的TEDA复合改性活性炭的穿透吸附容量最大,达到14.29 mg·g-1,与基炭、3%的氟硅烷改性和9%的TEDA改性吸附剂相比分别增加了11.63 mg·g-1、9.69 mg·g-1和1.69 mg·g-1。分析表明,氟硅烷改性使吸水率显著降低,减弱了水分子的竞争吸附,使吸附剂表面与碘甲烷结合的活性位点增加,增强吸附性能;同时TEDA浸渍使微孔减少较多但其与碘甲烷发生络合反应,增强化学吸附性能。本研究为解决核电站活性炭对碘甲烷吸附受湿度影响的问题提供了基础数据。

关键词(KeyWords): 树脂基活性炭;碘甲烷;吸附
参考文献

[1] Nandanwar S U,Coldsnow K,Green M,et al.Activity of nanostructured C@ETS-10 sorbent for capture of volatile radioactive iodine from gas stream[J].Chemical Engineering Journal,2016,287:593-601.

[2] Chen G Y,Zhao Q,Wang Z R,et al.Pitch-based porous polymer beads for highly efficient iodine capture[J].Journal of Hazardous Materials,2022,434:128859.

[3] 曹鑫,侯学锋,李鑫,等.乏燃料后处理工艺尾气中放射性碘的净化技术[J].产业与科技论坛,2020,14(9):43-47.

[4] Brian J R,John D V,Denis M S,et al.Materials and processes for the effective capture and immobilization of radioiodine:A review[J].Journal of Nuclear Materials,2016,470:307-326.

[5] 李旺长,黄毓英,吴彦伟,等.浸渍活性炭的制备及其捕集气态放射性碘的研究[J].辐射防护,1987,7(4):278-285.

[6] Chien C C,Huang Y P,Wang W C,et al.Efficiency of moso bamboo charcoal and activated carbon for adsorbing radioactive iodine[J].Clean-Soil Air Water,2011,39(2):103-108.

[7] Zhou J B,Hao S,Gao L P,et al.Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine[J].Annals of Nuclear Energy,2014,72:237-241.

[8] 杨全俊,梁晓怿,冯秀文,等.球形活性炭的制备及其对低浓度丙酮的吸附[J].现代化工,2016,36(9):131-134.

[9] Ho K,Park D Y,Park M K,et al.Adsorption mechanism of methyl iodide by triethylenediamine and quinuclidine-impregnated activated carbons at extremely low pressures[J].Chemical Engineering Journal,2020,396:125215.

[10] Doron K,Ido N,Liora S.Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate (DMMP) on activated carbon[J].Carbon,2006,44(15):3247-3254.

[11] Chelsie L B,Nathaniel P S,Brian J R,et al.Adsorption of iodine on metal coupons in humid and dry environments[J].Journal of Nuclear Materials,2021,556:153204.

[12] Christopher M E,Amanda J C,Patricia F,et al.Effect of humidity on the trapping of radioiodine by impregnated carbons[J].The Science of the Total Environment,1993,130/131:419-427.

[13] Park S W,Park H S,Lee W K,et al.Effect of water vapor on adsorption of methyl iodide to triethylenediamine-impregnated activated carbons[J].Separations Technology,1994,5(1):35-44.

[14] Chun H,Kang J,Han B.First principles computational study on the adsorption mechanism of organic methyl iodide gas on triethylenediamine impregnated activated carbon[J].Physical Chemistry Chemical Physics,2016,18(47):32050-32056.

[15] Lin H,Chebbi M,Monsanglant-L C,et al.KI and TEDA influences towards the retention of radiotoxic CH3I by activated carbons[J].Journal of Hazardous Materials,2022,431:128548.

[16] Li D,Daniel I K,Kimberly A P,et al.Iodine immobilization by silver-impregnated granular activated carbon in cementitious systems[J].Journal of Environmental Radioactivity,2019(208-209):106017.

[17] González-García M C,González J F,Román S.Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons[J].Fuel Processing Technology,2010,92(2):247-252.

[18] Ho K,Moon S,Lee H C,et al.Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)metal impregnated activated carbons under humid conditions[J].Journal of Hazardous Materials,2019,368:550-559.

[19] Ho K,Chun H,Lee H C,et al.Design of highly efficient adsorbents for removal of gaseous methyl iodide using tertiary amine-impregnated activated carbon:Integrated experimental and first-principles approach[J].Chemical Engineering Journal,2019,373:1003-1011.

[20] 陈景贵,侯根良,苏勋家,等.防潮活性炭的制备及防潮性能研究[J].化工新型材料,2014,42(10):79-80+101.

[21] 谢东,查舒卫,张维,等.活性炭疏水改性及其在高湿环境下对气态碘的吸附性能研究[J].南华大学学报(自然科学版),2021,35(3):36-43+82.

[22] ASTM-D3803-91.Standard test method for nuclear grade activated carbon[S].

[23] 车振宁,刘国昌,郭春刚,等.基于全氟硅烷/烷基SiO2协同效应的PTFE中空纤维膜表面超疏水改性研究[J].塑料工业,2020,48(7):19-23.

[24] Thommes M,Kaneko K,Neimark A V,et al.Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J].Pure and Applied Chemistry,2015,87(9-10):1051-1069.

[25] Tazibet S,Boucheffa Y,Lodewyckx P.Heat treatment effect on the textural,hydrophobic and adsorptive properties of activated carbons obtained from olive waste[J].Microporous and Mesoporous Materials,2013,170:293-298.

[26] Erich A M,Keith E G.Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces[J].Carbon,1998,36(10):1433-1438.

[27] Barry A.Tailoring surfaces with silanes[J].Chemtech,1977,7(12):766-778.

基本信息:

DOI:10.14078/j.cnki.1001-3741.2025.01.009

中图分类号:X771;TQ424.1

引用信息:

[1]王艳,梁晓怿.改性树脂基活性炭对高湿度碘甲烷吸附性能研究[J].炭素技术,2025,44(01):58-65.DOI:10.14078/j.cnki.1001-3741.2025.01.009.

基金信息:

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索